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Metal and semiconductor nanoparticles are having a major impact
on research in materials, chemistry, physics, and biological and
environmental sciencésControl over particle size and shape has
been achieved for a variety of compositions, e.g., Au, Ag, Pt, Co,
and PtFé:8 Small metal clusters (composed of several to tens of
atoms) with robust quantum effects or molecule-like properties (e.g.,
fluorescence) have also been extensively investigatédeEarly
research on metal clusters was focused on gas-phase bean
experiments, including the physical synthesis of clusters (e.g,, Na
Agn) and spectroscopic studies of their structural and electronic
properties* However, these gas-phase clusters are typically short-
lived and difficult to chemically functionalize for applications such
as catalysis or electron microscopy contrast enhancement of
biological sample&®1¢ Therefore, since the 1980s, research has
focused on solution-phase chemical synthesis of metal clugtéfs.

A number of improved synthetic methods have been reported for
the preparation of high-quality, relatively monodisperse, and ligand-
stablized nanoclusters in the form of solution dispersiérié.Metal
clusters, e.g., Aw, Auss, Aupg, Auyg, and A, as well as differently
sized Ag nanoclustefs;?223 have been synthesized, and their
catalytic and photoluminescence properties were extensively
studied?*=26 These synthetic strategies lead to nanoclusters with
greatly enhanced stability and allowed some degree of tailoring of
their physical and chemical properti®&To fully exploit the
fascinating properties of metal clusters, it is important to develop
new strategies for synthesizing clusters with useful properties and
enhanced stability.

This paper reports a facile thermal method in which Au
nanocolloids are converted into atomic Au clusters under high-
temperature reflux conditions. These clusters show distinct optical
properties and extraordinary stability. In addition, they serve as
building blocks allowing the synthesis of Au nanocubes.

Au clusters are prepared via a two-step process; the synthesis of;

~6 nm (diameter) Au nanocolloids and subsequent conversion into
clusters. Au colloids were synthesized via a modification of a
literature protocof® Briefly, AuClz (30 mg, 0.1 mmol) was
dissolved in a solution of didodecyldimethylammonian bromide
(DDAB, 20 mM) in anhydrous toluene under inert gas (e.@). N
An aqueous solution of NaBH40 uL, 9.0 M, freshly prepared)
was injected into the Au precursor solution under vigorous stirring
(see Supporting Information). Au colloids were further passivated
with dodecylthiol to enhance their stability. The colloids were
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Figure 1. (A) TEM image of Au nanoparticles. (B) Time-dependenttdV

vis spectra of the Au colloid under high-temperature reflee3Q0 °C),
curvea = 5 min,b = 15 min,c = 25 min,d = 35 min, ande = 55 min.

The inset shows the absorption (solid line) and fluorescence spectra (dashed
line, excitation= 250 nm). (C) Mass spectrum of Au clusters (note that
them/z = 178.4 species is assigned to §EH,);oNa" adducts). (D) TEM
image of Au nanocubes converted from Au clusters.

only Au nanoparticles with a diameter of 600.5 nm are present
(Figure 1A). The associated UWis spectrum shows an absorption
peak at 525 nm, which is the plasmon absorption of small Au
nanoparticles (Figure 1B, curve a). As thermal reflux proceeds, the
uby red color of the Au colloids gradually fades; the absorption
at 525 nm decreases, and a new peak at 305 nm develops and grows
with time. Finally, the 525 nm absorption completely disappears
after~50 min of reflux (Figure 1B, curvesbe). Under TEM, Au
nanoparticles are no longer observed in the final sample. These
observations show that during the high-temperature reflux process,
the initial 6 nm Au nanocolloids are converted into ultrasmall
clusters that cannot be imaged by TEM due to their extremely small
size.

The as-prepared ultrasmall Au clusters are characterized by mass

precipitated with ethanol and washed with hexane to remove EXCeSSypectrometry. Whetten and co-workers have shown that Au clusters

DDAB and possible reaction side-products. In the second step, the
Au nanoparticles (0.025 mmol in atomic Au) were redispersed in
a solution of dodecylthiol (0.4 M) in octyl ether, and the solution
was refluxed at~300 °C for ~50 min. During the initial stages
(<10 min), transmission electron microscopy (TEM) shows that

" Department of Chemistry.
* Department of Physics.

9900 = J. AM. CHEM. SOC. 2004, 126, 9900—9901

passivated with alkanethiols can be directly analyzed with laser
desorption/ionization mass spectrometry in the absence of matrix
molecules’® Following this method, the as-prepared Au cluster
sample (diluted with hexane in a 1:2 ratio) was deposited on a steel
plate without matrix molecules and, after drying, analyzed with a
MALDI mass spectrometer. Laser (337 nm) irradiation results in
desorption and ionization of clusters due to the breaking-e€S

10.1021/ja0482482 CCC: $27.50 © 2004 American Chemical Society
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and Au-S bonds?® Three major peaks are observed in the mass NSF for an MRI grant (CHE 0216492) that aided this research.
spectrum (Figure 1C). All the peaks are singlets, and their mass/We thank Prof. Norris for use of a UWis spectrometer, Prof.
charge ratiosrfyz = 197.2, 394.1, 591.5, respectively) are assigned Lee for use of a hood for synthesis, and Dr. Qin for assistance in
to Au monomers (At = 197, isotope abundance 100%), dimers MS analysis.

(Auz" = 394), and trl_mers (Asr = 591). No Iar_ger clusters are Supporting Information Available: Detailed experiments for the
detected when scanning the spectrum over a wide mass range (10 synthesis of Au nanoparticles and clusters (PDF). This material is

100 000 Da). Taken together with the spectroscopic data (see next,5jjaple free of charge via the Internet at http:/pubs.acs.org.
paragraph), the clusters prepared from Au colloids are most
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